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A refined definition of basic concepts for logic describing physical systems is 
proposed. Within the suggested formalism of generating semigroups the active 
logic of questions and passive logic of answers are introduced. The objects for 
which both logics are isomorphic are called self-adequate. It is shown that the 
assumption of self-adequacy implies that the object is either quantum or classical. 
The possibility of application of the theory to non-self-adequate objects is 
discussed. 

1. INTRODUCTION 

The notion of quantum logic was first introduced by Birkhoit and 
yon Neumann (1936). It was an attempt to give more evidence for the 
laws of quantum mechanics. 

The traditional Copenhagen interpretation supposes that a property of  
a physical object is not inherent in the object but merely characterizes the 
procedure of measurement of the property. The quantum logic interpretation 
of  quantum mechanics assumes that properties of  an object are inherent in 
the object itself, but the laws of logic operating with the properties may 
differ from usual ones. 

What does "a logic operating with properties" mean? We can always 
put in correspondence with any pair of properties a, b of an object their 
conjunction a ^ b (a and b) and disjunction a ^ b (a or b), which are also 
the properties of  the object. Properties of a classical object are described 
by measurable subsets of its phase space, which form a Boolean algebra. 
Conjunctions of  properties are described by intersections of corresponding 
subsets, and disjunctions correspond to set-theoretic union. Properties of 
a quantum object are described by closed subspaces of its Hilbert state 
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space. Conjunctions correspond to intersection of subspaces, and disjunc- 
tions are described by closed linear spans of subspaces. The property lattice 
in this case is not Boolean: the law of distributivity does not hold. The 
detail investigation of axioms for the property lattice of quantum systems 
was carried out by Piron (1964). 

In Section 2, following the traditional quantum logic approach (Jauch, 
1968), I consider the property lattice as a background mathematical object 
describing a physical system. The main drawbacks of this approach are 
underlined: it is more cumbersome than the conventional one and looks 
merely like an algernative language on which one can formulate the results 
of classical and quantum mechanics. 

In Section 3 the new background of generating semigroups for physical 
systems is introduced. The closure operator on this semigroup is defined 
and the collection of closed subsets is interpreted as the property lattice of 
the object. 

In Section 4 1 describe the logic generated by set-theoretic operat ions--  
the passive logic. It is usually called quantum logic of the object (Jauch, 
1968). 

In Section 5 1 introduce the logic generated by the semigroup product 
the active logic. This kind of  logic has never been considered in physics. It 
was introduced by Girard (1987). 

In Section 6 the connections between the two logics are discussed. The 
objects for which these logics are isomorphic are called self-adequate. The 
assumption of  self-adequacy implies that the object is either classical or 
quantum (Appendix C). 

Nonetheless, one has no reason to reject the possibility of the existence 
of objects which are non-self-adequate. Such hypothetical objects as a matter 
of principle cannot be described by quantum or by classical mechanics; 
however, the semigroup description stays valid. 

Where could one look for non-self-adequate objects? The underlying 
mathematical concept of  the formalism proposed is a semigroup. By each 
semigroup one can restore an automaton whose external behavior is 
described by this semigroup. Such an automaton can in turn be considered 
not only as an abstract one, but also as a model for some object. This object 
is not obliged to be tangible or material. It can be anything to which we 
are able to put questions and receive answers. However, the multiplicative 
and the additive logics describing such an object are not necessarily 
isomorphic. Moore (1956) considered a more special situation: a finite 
automaton which can be realized as a purely classical object displayed some 
features of quantum behavior. The further invesitgation of quantumlike 
automata was recently performed by Finkelstein and Finkelstein (1983) and 
Grib and Zapatrin (1989). 
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2. T R A D I T I O N A L  Q U A N T U M  LOGIC:  PHYSICAL OBJECT AS 
PROPERTY LATTICE 

From this point on the objects we investigate are considered as a 
collection of  all its properties. All the properties of  an object form a lattice 
under  conjunction and disjunction. I f  this lattice is Boolean, I call the object 
classical. I f  the lattice satisfies the axioms ofsubspace lattice (Piron, 1964), 
the object is called quantum. Under such an approach the notions of  phase 
space or respectively state space become secondary and the essential 
difference between mathematics describing classical and quantum objects 
vanishes. 

Besides the significant methodological  advantages, the description of 
physical systems by means of their property lattices has a remarkable 
drawback. Lattices are not suitable mathematical  objects to work with. One 
has to coordinate them, namely to represent them as algebras of  subsets or 
subspaces, thus reverting to conventional description. To ensure that the 
description is universal so as to make no distinction between classical and 
quantum objects, we must find a universal way to represent the lattices. 

Note that property lattices for both classical and quantum systems are 
complete. That means that there exist conjunctions and disjunctions for 
any number  of  elements. However,  any complete lattice can be represented 
as an algebra of  closed subsets of  some set endowed with a closure operation. 
This construction is called polarity and was introduced in general form by 
Birkhoff (1967). 

3. THE REPLACEMENT OF BACKGROUND:  PHYSICAL OBJECT 
AS S E M I G R O U P  

First we describe the Birkhoff polarity construction. Consider a set P 
and a symmetric binary relation ~b on P. To any subset A c p we can put 
into correspondence its polar  A* ~ P defined as follows: 

A • ={p ~ P lVa ~ A,p~a} (1) 

Any subset B c p of  the form B = A ~ is called a polar. Polars for any 
symmetric relation always form a complete lattice F , ( P ) .  For any subset 
A c p its closure CI A is defined as bipolar: 

C1 A = (A*)* 

The lattice F , ( P )  is then the lattice of  closed subsets of  P, namely the 
subsets satisfying the condition 

A = C 1 A  

If  the relation q~ is irreflexive, 

aqJa ::~ Vp c P, a~bp (2) 
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then F~(P) is a complete lattice with orthocomplementation (1). To be 
distributive, F+(P) must also satisfy Sik's condition (Sik, 1981), 

Vp, q c P ,  ptpq ~ (3v~Plr tpr&rOp&rq~q)  (3) 

The detailed consideration of the mathematical properties of polarities 
is beyond the scope of this paper. I only emphasize that classical objects 
with their distributive property lattices are merely special cases of  more 
general systems specialized by conditions (2), (3). 

The basic concept of  the formalism I suggest is the generating sernigroup, 
which is put into correspondance to a physical object. Closed subsets of 
the semigroup form a property lattice of the object. In detail, this construc- 
tion looks as follows. 

An abstract semigroup P is considered as a set of all conceivable 
elementary coercions (or questions, or experiments) on the object. The 
semigroup product p .  q in P is interpreted as the joint effectuation of  both 
coercions p and q. The semigroup P is not supposed commutative: in general 
pq ~ qp. Besides, P always contains a unit element e ~ P understood as 
"doing nothing." 

The relation 0 is defined by fixing a subset 0 ~ P which is called the 
absurd subset. Elements of the absurd subset are interpreted as questions 
we are unable to put or experiments we are unable to perform. Define 

D e f  

POq r Pq ~ t) (4) 

So POq means that coercions p and q are mutually exclusive. The request 
of  symmetricity of the relation 0 restricts the possible choice of the subset 
0: it must be reflexive, i.e. (Thierrin, 1957): 

Vp, q~P ,  p q e ~  ~ qP~O 

Thus, if we set up a semigroup P and a reflexive subset 0 c p we can 
unambiguously construct the lattice F~(P) which can be considered as a 
property lattice of some object. This lattice is called the passive or additive 
logic of the object. 

4. ADDITIVE LOGIC 

As mentioned above, any property is understood as the set of elementary 
coercions fitting this property. Let P be a generating semigroup with absurd 
set ~b and A c p be a property. Which set corresponds to the negation of 
A? We define the negation of the property A as the set of all experiments 
mutually exclusive with any experiment fitting A. It is none other than the 
polar of  A: 

-hA = {p c P[ Va c A, pOa} = A ~ (5) 
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To keep the law of double negation valid, we must assume that for 
any property A 

(aq')q' = A 

Therefore properties of  the object correspond to closed subsets of P. That 
is why F0(P)  is called the property lattice for (P, 4'). 

Meets in F+(P) are usual set-theoretic intersections: they are interpreted 
as conjunctions of properties. Joins in F+(P) are defined as follows: 

A v B = CI(A w B) 

The algebra (F4(P), 7 ,  ^,  v ) is called the additive logic of the object 
with generating semigroup (P, q~). 

In Appendix A the formalism of classical mechanics is converted in 
terms of generating semigroups. For quantum systems such a conversion is 
described in Appendix B. The additive logic of Appendix B is what is 
usually called a quantum logic. 

5. MULTIPLICATIVE LOGIC 

Using the semigroup product in P, we can construct one more logic 
for (P, 4') generated by a product of subsets of P. The negation in this logic 
is defined in the same way as in the additive one. "No t  A" is a polar A ~'. 

Let A, B be properties. The multiplicative conjunction A |  B is defined 
as the set of  all mutual coercions fitting A and B, respectively, namely 

Def 

c c A |  <::> 3a~A,  b~B[c=ab  

Thus 

A |  B) 

Multiplicative conjunction A@B is the least property containing all 
mutual coercions of  the form a .  b. 

The multiplicative disjunction A@ B is defined using De Morgan's law: 

A(~ B = ~ ( - n A |  = (A+B~') ~ 

The algebra (F,(P),--1, | O) is called the multiplicative logic of  the 
object with generating semigroup (P, 4'). For commutative semigroups the 
notion of multiplicative logic was introduced by Girard (1987). 

In general, multiplicative logic has many undesirable features: some- 
times A |  # A, A |  # B|  etc. However, as is shown in Appendices 
A and B for both classical and quantum objects the additive and the 
multiplictive logics are isomorphic. 

One more special case treated in detail is when P is a semigroup with 
involution and 4' is an ideal in P satisfying certain conditions. Such a 
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semigroup is called a Baer *-semigroup and the lattice F~,(P) is isomorphic 
to a lattice of  projectors in a Hilbert space or direct sum of Hilbert spaces 
(Pool, 1968). 

6. CONNECTIONS BETWEEN THE LOGICS 

The concept of property is identical in the two logics in both the 
substantial and mathematical senses. Substantially a property is the set of 
elementary coercions (elements of generating semigroup) fitting this 
property. Mathematically the property is described as a closed subset of  P 
(an element of the property lattice). The difference between the two logics 
emerges in considering the semantics of logical operations. 

Let A, B be properties. The additive conjunction A A B is their set- 
theoretic intersection. Each element of A A B fits both A and B. To fit A A B 
we have no need to perform any additional coercions on the object. Thus, 
the additive logic can be also called passive. It describes the logical connec- 
tions between possible answers on the questions put to the system. 

Each coercion fitting the multiplicative conjunction A | B is interpreted 
as a mutual performing of  coercions fitting A and B, respectively. If  we 
know which elements of P fit A and /3, it is still not sufficient for finding 
all elements fitting A |  B. We must effectuate new coercions--mutual  ones. 
So the multiplicative conjunction demands new experiments, and multi- 
plicative logic thus can be called active. To perform an experiment is, in 
other words, to put a question to the system. That is why multiplicative 
logic can also be called the logic of questions. 

In some special cases the two logics can be isomorphic, namely 

VA, BcF~,(P), A A B = A |  

Objects possessing such logics are called self-adequate. As was men- 
tioned in Section 5, for both classical and quantum systems the additive 
logic is isomorphic to the multiplicative one. Thus, they are self-adequate. 
Moreover, as is shown in Appendix C, only these objects are self-adequate. 

Remark. There are many mathematical connections between operations 
of additive and multiplicative logics. Some of them are treated by Girard 
(1987). However, the mathematical investigation exceeds the bounds of  this 
paper. 

8. S U M M A R Y  

Here I put together the basic concepts of  the formalism proposed. 
1. We put into correspondance to any object its generating semigroup 

(P, ~b). Elements of P are understood as conceivable elementary coercions, 
or questions on the object. 
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2. The absurd set 4 'c  p is a reflexive (pqe  4' ~ qpe 4') subset of  P. 
Elements of  q~ are understood as nonperformable  coercions. 

3. Let A c P be a set of  questions. The negation of A is defined as a 
polar to the set A - - a  set of  questions mutually exclusive with any question 
from A: 

~ A  = {p ~ PlVa ~ A, pa ~ f }  = A ~ 

4. A property of the object is any closed subset A, i.e., coinciding with 
its double negation: A = -7-7A = (A+) ~'. 

All the properties form a lattice denoted by F~(P).  I f  a ~ A, we say 
that the question a fits the property A. 

5. The additive conjunction (passive AND)  is defined on F~(P)  as a 
set-theoretic intersection: 

A A B = A ~ B  

The property A ^ B consists of  all questions fitting both A and B. 
6. The multiplicative conjunction (active AND)  is defined as a closure 

of  the semigroup product  of  properties: 

A |  B = CI(AB) 

A B = { a b l a 6 A  & bc  B} 

The property A |  is the least property containing all questions of  
the form ab, where a, b fit A, B, respectively. 

7. Both the additive and the multiplicative disjunctions are defined in 
accordance with De Morgan 's  law: 

A v B = 7 ( ~ A  ^ -TB) = (A* ~ B*) ~' 

A@ B = 7 ( - T A |  = (A~B*) ~ 

8. Thus, the pair (P, 4') generates two algebras of  sets (F~(P),  -7, A, V) 
and (Fz(P) ,  7 ,  | G),  which are called the additive and the multiplicative 
logic, respectively. The former is what is usually called the quantum logic 
of  the system (Jauch, 1968; Finkelstein and Finkelstein, 1983). 

9. An object is called self-adequate if its multiplicative and additive 
logics are isomorphic. Both classical and quantum objects, and only they, 
are self-adequate (see Appendix C). 

10. The formalism proposed is applicable to any object to which we 
are able to put questions and receive answers. In the classical and quantum 
areas it gives nothing new above the conventional. Thus, the area of  its 
possible applications is in a hypothetical domain of non-self-adequate 
objects. 
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APPENDIX A. CLASSICAL MECHANICS IN SEMIGROUP 
LANGUAGE 

Let V be a phase space of a classical system S. Any observable on S 
can be interpreted as real-valued measurable function on V. Let P be the 
set of  all observables. The product in P is defined pointwise: 

Vv e V ( fg)(v)  = f ( v ) "  g(v) 

The absurd subset q, consists of  the only zero observable. Let A be an 
arbitrary subset of  P Consider its polar: 

AO= { p e  P[Va e A, V v e  V,p(v)  " a(v)  =0} 

Evidently p(v)  e A r if its support  supp p does not intersect with the 
support  of  any element of  A. Thus A + is a class of  observables whose 
supports do not intersect with the union of supports of  elements of  A. This 
class can be characterized by certain subset of  V, namely V\[._JoEa supp a. 
Therefore, any element of  Fr  since it has a form A +, corresponds to 
the unique element of  B( V) - - an  algebra of  measurable subsets of  V. Thus, 

Fr  ~- B(V) 

The additive logic on F~(P) is isomorphic to the Boolean structure of 
B(V). Here a cA means supp a c A. In order to define multiplicative 
conjunction, consider the product of two properties: 

AB ={ablsupp a c A & supp b c  B} 

p e AB iff supp p contains in both A and B, i.e., contains in their intersection. 
Thus AB = A c~ B, hence 

A |  

Thus, the two logics are isomorphic. 

APPENDIX B. Q U A N T U M  MECHANICS IN SEMIGROUP 
LANGUAGE 

Consider a quantum system with the state space ~.  In this case P is 
the semigroup of  bounded linear operators on Y~ and tp is the null operator. 
Let A c p. Consider the polar  A ~. Here b e A * means that for any a e A, 
ba--O. Thus A * is the class of  operators whose images contain in the 
intersection of kernels of  operators from A. This class can be characterized 
by this intersection i tse l f - -a  closed subspace of ~. Thus we can put into 
correspondance to any polar  A * the subspace of  ~ ;  hence 

F,(P) = ~()~) 
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The additive logic of  (P, ~b) is isomorphic to the lattice structure of 
L t (N) - - the  lattice of closed subspaces of N. Here a ~ A means A c  Ker a. 
Consider the product of two properties A .  B. Since properties A, B contain 
all operators with kernels containing the subspaces A, B, respectively, the 
kernel of any product operator a .  b will contain the intersection A n B. 
Thus, A |  B = A n B and, as in the classical case, the two logics are isomor- 
phic, too. 

Remark. The reasoning above is merely a sketch of a more rigorous 
investigation considering the algebras of  left polars and right polars. 
However, a more detailed analysis would exceed the bounds of this paper. 

A P P E N D I X  C. C O N S E Q U E N C E S  OF SELF-ADEQUACY 

Suppose an object with generating semigroup (P, tp) is self-adequate. 
This means that the algebras (F~,(P),-% ^,  v) and (F~,(P), 7 ,  |  are 
isomorphic, or, in other words, 

A |  (C1) 

for any A, B ~ Fr 
Let A = ~ ,  B = P .  Then ~b |  hence ~ = ~ P .  

Analogously, assigning P to A and ~ to B in (C1), we obtain ~b -- P~b. Thus, 
is a two-sided ideal in P. Consider the Rees quotient semigroup/3 -- P~ ~b. 

The absurd set in/5 will be O; however, F~,(P) -~ F0(P). Since ~b is a reflexive 
ideal in P, /5 is a Baer semigroup and Fo(P) is a product of  weakly 
orthomodular  lattices. This product can be imbedded into the property 
lattice of  a physical system whose state space is an integral of  Hilbert spaces. 
If  the integral consists of the only lattice, it corresponds to a purely quantum 
system (Gudder  et al, 1982). If  all the lattices in the integral turn into 
two-element Boolean algebras, the property lattice Fo(/5) is Boolean and 
thus describes the classical system. For finite systems this construction is 
described in detail by Grib and Zapatrin (1989). 
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